

CHARM Extension Guidelines
version 1.1.0 · 4 September 2019

CHARM by Institute of Heritage Sciences (Incipit), Spanish National Research Council (CSIC)

is licensed under a Creative Commons Attribution 4.0 International License.

This document and its contents were created by César González-Pérez with the help of Patricia Martín-Rodilla.

Partial funding was provided by Incipit · CSIC and projects MIRFOL (09SEC002606PR, INCITE Programme,
Xunta de Galicia, Spain), ARIADNE (313193, FP7-INFRASTRUCTURES-2012-1) and MARIOL (HAR2013-41653-
R, Retos de la Sociedad, Plan Estatal 2013-2016, Spain).

4 September 2019 12:28 revision 107

CHARM Extension Guidelines · version 1.1.0 · EN

2

Table of Contents

Introduction .. 3

Background and Motivation .. 3

Creating a Particular Model .. 4
Picking a Base Model ... 4
Renaming, Modifying and Removing Elements ... 4
Adding Your Own Content ... 6

A Sample Particular Model .. 7

Extension Process .. 8

Extension Best Practices .. 9
Extension Means Refinement .. 9
Use Model Refinement Hierarchies in Organizations .. 9

Acknowledgements ... 10

References ... 11

CHARM Extension Guidelines · version 1.1.0 · EN

3

Introduction

This document presents some guidelines on how to extend CHARM, the Cultural Heritage
Abstract Reference Model. Some knowledge of CHARM is assumed throughout; if you are not
familiar with CHARM, please refer to the CHARM White Paper [4] before reading this
document. Some knowledge of object-oriented modelling, and in particular of ConML, is also
assumed; if you are not familiar with this, please refer to the ConML web site [2] for
introductory resources.

The CHARM extension guidelines rely extensively on ConML’s extension mechanisms. This
guide hides most of the unnecessary technicalities; however, if you are interested in the
details, please see the ConML Technical Specification [1] for detailed information. If you need
information on the academic underpinnings of CHARM, please see the Research and
Resources/Publications areas, online [3].

For additional information on CHARM, please visit www.charminfo.org.

Background and Motivation
CHARM is an abstract reference model of cultural heritage. This means that it represents the
elements of interest to cultural heritage, but from a very abstract point of view. This is
intentional; by being abstract, CHARM is applicable to a wide range of problems, geographical
areas, chronological periods, cultural scenarios and methodological approaches. Thus, CHARM
contains concepts such as MaterialEntity, Agent or Valorization.

However, by being abstract, CHARM is not directly applicable, since it does not contain specific
representations of those things that anyone in particular may be interested in. In other words,
it is very unlikely that any user of CHARM would find the specific concepts they need already in
CHARM. For example, an archaeological museum adopting CHARM would not find concepts
such as Beaker or PotteryShard in CHARM; similarly, an anthropologist studying heritage
formation processes would not find concepts such as IdentityAppreciation or Cultural-
Production in CHARM.

You need to extend CHARM in order to use it. Although the word “extend” often suggests
adding new contents to something, in the context of models “extending” means adding,
removing or modifying classes, attributes, associations and other elements to the base model
in order to obtain a resulting model that is perfectly adjusted to your task at hand. Following
on our example above, the archaeological museum may add Beaker and PotteryShard classes
to represent the concepts they are interested in, plus an association linking them together. By
extending CHARM, you achieve two goals at the same time:

• You obtain a model that is tailored to your particular project or situation. In other
words, you are not forced to use an off-the-shelf standard that may not be suitable for
you.

• The model that you obtain is still based on CHARM, so that certain level of
compatibility is maintained between your projects and other projects using CHARM-
derived models. Besides giving you a head start, this facilitates the exchange,
comparison and reuse of information.

The result of extending CHARM, i.e. the model that you obtain, is called a particular model. The
following sections discuss how particular models are created, and describe an example.

http://www.charminfo.org/

CHARM Extension Guidelines · version 1.1.0 · EN

4

If any of these concepts is not clear, please revise the CHARM White Paper [4].

Creating a Particular Model

This section describes the tasks related to the creation of a particular model, i.e. a CHARM-
derived model that is perfectly adjusted to your needs. There are three major tasks that you
need to carry out in order to create a particular model:

• Pick a base model. This may be CHARM itself or a CHARM-derived particular model.

• Study the selected model to rename, modify or remove elements.

• Add your own elements to the model.

These tasks are discussed in depth in the following sections.

Picking a Base Model

A particular model is never created from scratch. Rather, you start by selecting a base model.
This may be CHARM itself, or another existing particular model if you have one. Since any
particular model is ultimately based on CHARM, your model will also be based on CHARM,
either directly or indirectly.

By default, every element in the base model that you select will become a part of your
particular model (but see next section for exceptions), so you should select the base model
that best suits your needs. You should try to find a model that is as close as possible to your
project or situation, but perhaps a little bit more abstract, and use that model as a base. If your
organization has developed an organization-level model that every project is expected to use,
you may find that it provides valuable concepts that are missing in CHARM; similarly, if your
department or team has a specific model that you repeatedly use for your projects, you may
find that it contains almost every concept that you need, and that they are precisely arranged
in the right manner. If this is not the case and there is no custom model that you can use, then
you can always use CHARM as a base model, but you will need to put more work to adjust it to
your project or situation.

See Use Model Refinement Hierarchies in Organizations, p. 9 for additional recommendations
on how to develop and maintain a meaningful hierarchy of particular models.

Renaming, Modifying and Removing Elements

Once you have selected a base model, your particular model is initially identical to said base
model. However, it is often necessary to change things in order to adapt them to your project
or situations. This can be achieved by renaming, modifying or even completely removing
elements in the model according to our needs.

These are the kinds of changes that are possible:

• An element in the model can be renamed. For example, the Agent class could be
renamed as Actor if this name is more suitable for your purpose.

• An element in the model can be removed altogether. For example, the TangibleEntity
class (and all its subclasses) could be removed from the model if your model is not
concerned with tangible entities at all.

The following sections provide details about each of these kinds of changes.

Renaming Elements

You should rename an element in the model if the name provided by the base model is not
suitable for your needs. You must bear in mind, however, that the semantics of the concept

CHARM Extension Guidelines · version 1.1.0 · EN

5

represented by the model element are not expected to change by the renaming. If you need a
different concept, do not use renaming; add a new concept (see Any association may be
removed if it is not relevant.

Adding Your Own Content, p. 6); if, on the contrary, the semantics are suitable but the
terminology is not, then renaming is an appropriate technique. For example, renaming a class
Structure as House would not be advisable because, although it can be argued that houses are
structures, the two terms clearly mean different things. Renaming Person as Individual would
be acceptable, though.

You can rename almost anything in the model: enumerated types, enumerated items, classes,
attributes and semi-associations can be renamed.

Removing Elements

Removing an element is useful when your particular model is not concerned with said
element. Removal should be used when a simplification of the base model is convenient, and
the semantics of the model allows for the resulting structural change. This latter part is
important, since it imposes certain limitations to which elements can be removed and which
cannot, as explained below.

Enumerated types, enumerated items, classes, attributes and associations can be deleted from
a model, according to the following rules.

Enumerated Types

If you want to remove an enumerated type, you also need to remove all the enumerated types
that specialize from it. Also, you will need to remove all the attributes having the enumerated
type as type, either by themselves or by removing the owner classes.

For example, if you wanted to remove the ConstructionTechnique enumerated type from
CHARM, you would need to remove the ConstructedStructure class, since this class owns an
attribute, ConstructionTechnique, of type ConstructionTechnique. Any additional enumerated
types that had been added as specializations of ConstructionTechnique would have to be
removed as well.

Enumerated Items

If you want to remove an enumerated item, you also need to remove all the descendant
enumerated items.

For example, if you wanted to remove the Stonework enumerated item from the Construction-
Technique enumerated type in CHARM, you would also need to remove the enumerated items
AshlarStonework and RubbleStonework, since they are subitems of the former. If any other
enumerated type specializing from ConstructionTechnique existed, and had sub-items from any
of these, they would have to be removed as well.

Classes

If you want to remove a class, you also need to remove all its descendant classes. In addition,
you also need to remove all the associations connected to that class and its descendants.

For example, if you wanted to remove the TangibleEntity class in CHARM, you would also need
to remove all the classes specializing from it, such as Place and MaterialEntity, plus all the
classes specializing from these, such as StructureEntity, and so on. In addition, you would need
to remove any association connected to any of them; it is the case of e.g. NamedMeasure,
which Describes 1 TangibleEntity.

Please note that removing a class may lead to a considerable cascade of removals if the class
being initially removed is high up in the generalization hierarchy. However, this may be the
desired effect, since the resulting model will be much smaller and simpler.

CHARM Extension Guidelines · version 1.1.0 · EN

6

Attributes

Any attribute may be removed if it is not relevant.

Associations

Any association may be removed if it is not relevant.

Adding Your Own Content

Renaming and removing elements allows you to customize the particular model according to
your needs. However, you will most likely need to add extra elements as well. You can add
whatever elements you need by following the rules that are described in the sections below.

Enumerated Types and Enumerated Items

You can add new enumerated types as necessary. This includes specializing existing
enumerated types as well as adding totally new enumerated types.

For example, you could add a MediterraneanConstructionTechnique enumerated type that
specializes from the ConstructionTechnique enumerated type in CHARM if you were
developing a particular model for Mediterranean traditional architecture. You could also add a
new Colours enumerated type to list a colours standard table, which does not specialize from
anything in CHARM.

You can freely add enumerated items to the enumerated types that you create from scratch.
You can add sub-items to existing items in enumerated types that you create as specializations
from existing ones. However, you cannot add root enumerated items to enumerated types
that you create as specializations from existing ones.

Following on with the example above, you could populate the newly added Colours
enumerated type with items White, Grey, Red, etc., since this is an enumerated type that you
have created from scratch. You could also add items to the MediterraneanConstruction-
Technique enumerated type; in this case, and since this enumerated type inherits its items
from ConstructionTechnique in CHARM, you could only add sub-items to the existing items. For
example, you could add DryStone as a sub-item under RubbleStonework.

Classes and Features

You can add classes to your model as long as they specialize from existing classes. In other
words, you cannot add standalone classes that do not specialize from anything. This limitation
rarely has a practical impact, since CHARM provide the Entity class as a specialization root, so
any class that you may want to add could specialize, directly or indirectly, from this class.

For example, you could add a Celebration class as a specialization of the SocialAct class in
CHARM, since celebrations are a special case of social acts.

You can freely add attributes to classes that you add in this manner. Similarly, you can freely
connect classes that you add in this manner by using associations. Please bear in mind that,
since the classes that you add specialize from other classes, they will inherit their attributes
and associations. For this reason, you need to take these inherited features into account when
deciding which ones to add.

For example, you could add a YearStarted attribute to your Celebration class to document
when a celebration was first observed. However, since Celebration specializes from SocialAct,
it inherits the HasUsualParticipant association towards Agent, so you do not need to add
anything to document what agents participate in each celebration.

You can also add attributes to classes that are taken straight from the base model, or connect
associations to them. For example, you could add an attribute to SocialAct itself, or create a
new association that connected one of your classes to SocialAct.

CHARM Extension Guidelines · version 1.1.0 · EN

7

A Sample Particular Model

Let’s assume the following scenario. A network of museums is about to start a campaign to
collect feedback from visitors about the collections on display. The aim is to capture specific
comments from visitors about each collection over a long period of time, so that each museum
can assess how well received the changes to display and interaction techniques are. Each
museum in the network will display multiple collections during the campaign, each collection
being composed of multiple objects. Each object will be presented to visitors with a title and a
text description. Visits to each museum will be recorded at exit points, and basic details for
each visitor will be noted, such as name and nationality. It is important to keep track of how
many visitors make up each visit, and what the reason is for each visit, in order to obtain
meaningful statistics later. Then, visitors will be asked to volunteer to fill in a simple feedback
form where they will be able to provide short comments about which collections they liked or
disliked, and why.

A particular model is to be created to describe this situation. The aim of this model will be the
development of a database that will allow each museum to store and manage the information
related to the campaign, as well as to relate this information to other CHARM-based data
sources.

We assume that the museum network has no organization-level model that we could use, so
CHARM is selected as base model (see Picking a Base Model, p. 4). This is also the simplest
case, so it works well for illustration purposes. The contents of CHARM can be found on the
online CHARM Reference [3]. Once this decision is made, we proceed to modify the model as
needed (see Renaming, Modifying and Removing Elements, p. 4) and add the necessary
content to represent the concepts that are specific to the task at hand (see Adding Your Own
Content, p. 6), namely museums, collections, visitors, etc. Figure 1 shows the result.

Figure 1. Sample particular model obtained for the scenario described above. Classes shown in white are taken
directly from CHARM. Classes shown in green have been added new as part of the particular model. Red lines
indicate removed elements.

Museum

Name [Name]: 1 Text

Address: 1 Text

Email: 1 Text

Collection

Name [Name]: 1 Text (L)

Description: 1 Text (L)

Object

Code: 1 Text

Title [Name]: 1 Text (L)

Descrip tion: 1 Text (L)

Visit

Date [Moment]: 1 Time

Reason: 0..* enum VisitReason

Visitor

Nationality: 0..1 Text (L)

VisitReason:
 Leisure,
 Research,
 SchoolTrip,
 Other

Evaluation

Date: 1 Time

Organization

Name: 0..* Text (L)

ObjectSet

Name: 0..* Text (L)

ObjectEntity (A)

Name: 0..* Text (L)

Material: 1 ..* enum Material
Basis

1..*0..*

1 1..*0..*1

TimePoint

Name: 0..* Text (L)

Descrip tion: 0..1 Text (S, L)

Moment: 1 Time

Destination 1

0..*

Person

FullName: 0..* Text

GivenName: 0..1 Text

FamilyName: 0..1 Text

0..* 1

Subject

NonExpertValorization (A)

Name: 0..* Text (L)

Contents: 1 Text (T, L)

0..*1

Issuer

1..*

0..*

IsTheBasisFor

BelongsTo [IsTheBasisFor]Displays (T)

Refers To [Valor izes]

IsIssuedBy1..* 0..*

[IsIssuedBy]

Author [Issuer]

HasAsSubject

H
as

A
sD

es
ti

n
a

ti
o

n

CHARM Extension Guidelines · version 1.1.0 · EN

8

In Figure 1, the classes representing concepts that are particular to our scenario are shown in
green. They stand for the specific knowledge that makes our scenario different from most
others, and hence the need to extend CHARM. It is easy to see that all these classes are
mentioned, directly or indirectly, in the scenario description that is provided at the top of this
section.

These classes need to become part of our particular model, and since they can only do so by
specializing from classes in CHARM (see Adding Your Own Content, p. 6), it is crucial to
determine what classes from CHARM we need to retain in the model, and which can be
dropped. Figure 1 shows that, for example, Museum has been defined as a specialization of
Organization in CHARM, and Visit as a specialization of TimePoint in CHARM.

Once all the particular classes have been incorporated in this manner, every class in CHARM
that is not necessary can be removed. Since our scenario is small and involves only a handful of
concepts, most of the classes in CHARM can be safely ignored. This is achieved by removing
them (see Removing Elements, p. 5). We can safely assume that all the CHARM classes not
shown or referenced in Figure 1 have been removed in this manner. In addition, the CHARM
classes that are kept can be altered as needed (see Renaming, Modifying and Removing
Elements, p. 4). In our example, no renaming is applied, but a number of attributes are
removed. For example, Figure 1 shows that the Name attribute has been removed from two
CHARM classes.

Finally, it is important to bear in mind that any classes added to the model will inherit the
attributes and associations of the classes they specialize from according to the relevant rules.
For example, in Figure 1, the class Visit is introduced as having attributes Date, of type Time,
and Reason, of type VisitReason. The Date attribute is a redefinition of the inherited Moment
attribute of TimePoint, as denoted by the square brackets in the figure. The VisitReason
enumerated type, not present in CHARM, will need to be defined as well as part of the
particular model. The Visit class, however, does not inherit the Name attribute as it has been
removed.

Extension Process
Over the previous sections we have shown that the creation of a particular model involves
three different tasks: picking a base model, modifying it, and adding your own content (see
Creating a Particular Model, p. 4). These tasks are rarely performed as a sequence, because
they are strongly interconnected. For example, it is often difficult to determine what
modifications are necessary before the new content has been at least explored and sketched.

This section describes the suggested process that you should follow to create a particular
model. The process outline is as follows:

1. The scope and goals for your particular model are determined.
2. A base model is selected, depending on the above-mentioned scope and goals.
3. Candidate new classes are identified, by determining the relevant concepts to capture

in the particular model according to its goals and scope.
4. Ancestor classes in the model are determined for each of the candidate new classes,

by finding the best semantic matches.
5. Existing classes in the model are marked as candidates for removal, as they are not

relevant to the particular model.
6. New attributes and associations for candidate new classes are sketched. New

enumerated types are sketched.
7. Attributes and associations of selected ancestor classes are marked as candidates for

removal, as they are not relevant to the particular model.

CHARM Extension Guidelines · version 1.1.0 · EN

9

8. Repeat from step 3, tightening relationships and converging towards a stable solution
that captures all the relevant concepts at the appropriate level of detail as established
by the particular model scope and goals.

Extension Best Practices
This section describes some extension guidelines that should be always taken into account.

Extension Means Refinement

Extending a model means that the resulting particular model will be a refinement of the base
model. By “refinement” we mean a more specific, concrete and tailored variant. This means
that model extension is applicable whenever a more specific, concrete and tailored model is to
be obtained, but not in other cases.

For example, let’s imagine that a model exists which has been used for a series of similar
projects with great success. We are now faced with a new project that is different, and we
wonder whether we should extend the existing model in order to reuse as much of it as
possible, remove whatever parts are not relevant, and add the necessary new elements. This
would not be advisable, because the new project does not entail a more specific, concrete
and/or tailored situation as compared to the previous projects; rather, it is at the same level of
abstraction. If anything, an organization-level model, if there is one, could be extended into a
project-specific one, but a project-specific model should not be extended “sideways” into
another project just to achieve reuse.

See Use Model Refinement Hierarchies in Organizations, p. 9 for further elaboration on this
theme.

Use Model Refinement Hierarchies in Organizations

In Background and Motivation, p. 3 we say that CHARM is an abstract model, and presented
this as the reason why it cannot be directly applied to any project or situation, and why the
creation of particular models is a need. However, and as hinted at in Picking a Base Model, p.
4, not every particular model needs to be aimed at being directly applied to specific projects.
Quite to the contrary, it is advisable to consider the creation of intermediate models that
capture intermediate levels of abstraction, more specific than CHARM but more abstract than
any particular project, whenever the organizational context so suggests. In other words, if the
development of a particular model is seen as a dramatic reduction of abstraction, then we can
say that this reduction does not need to be made in a single step (from CHARM to a highly
specific model), but it can be better made in a sequence of steps (from CHARM to an
intermediate model and from this to a highly specific model, for example).

Let’s imagine an archaeology consultancy firm doing survey and excavation work under
contract. They want to adopt CHARM for all their work, in order to homogenize their data
management operations while being able to handle the peculiarities of each project. Instead of
having each project create a project-specific particular model using CHARM as a base, this
organization would better create an organization-wide model (using CHARM as a base), and
then create project-specific particular models by using this organization-wide model as a base
whenever necessary. By doing this, they would be able to capture organization conventions,
procedures and standards into the organization-wide model, thus giving any project a head
start by giving them added specificity by default. Figure 2 shows the difference between the
two options.

CHARM Extension Guidelines · version 1.1.0 · EN

10

Figure 2. Model hierarchies in organizations. In scenario A, every project model is created from CHARM, which
involves a large change in abstraction level. In scenario B, an organization-wide model has been created once, and
project models are created from it rather than from CHARM, which involves a much smaller change in abstraction
level.

Usually, the larger the change in abstraction level, the larger the modelling effort. For this
reason, a scenario such as B in Figure 2, where an organization-wide model captures concepts
that are common to every project, not only helps standardize information management in the
organization and capture relevant methodological knowledge; it also reduces the effort that is
necessary to develop project-specific models.

For example, the archaeology consultancy firm from our example above may create an
organization-wide particular model comprising classes such as Mound and Wall, since these
are kinds of material entities that they often deal with in most projects. They would invest a
significant amount of time in obtaining good definitions for these terms, and linking them
together, and to other classes, in the most appropriate way for their objectives. Then, projects
in the firm would use this organization-wide model as a base in order to create their project-
specific particular models, gaining direct access to the Mound and Wall classes and perhaps
refining them.

Finally, it is worth noting that model hierarchies can occur in multiple rather than a single level.
For example, a large organization with multiple departments may want to develop a CHARM-
based organization-wide model, and then ask each department to refine that into a
department-specific model. Projects in each department would be created by using the
relevant departmental model as a base. Or, an organization that often carries out projects of
different kinds (excavation and museum design, for example) could develop a separate
particular model for each project type, and then particular models for each individual project
within their type.

Acknowledgements
Very special thanks to Brian Henderson-Sellers, Chris Partridge, Isabel Cobas Fernández, Martin
Doerr and Sergio España for their helpful insights.

Special thanks to the members of the MIRFOL team: Alejandro Güimil-Fariña, Camila Gianotti,
César Parcero-Oubiña, Charlotte Hug, Patricia Martín-Rodilla, Pastor Fábrega-Álvarez and
Rebeca Blanco-Rotea. They are the co-creators of CHARM. Also special thanks to the
collaborators who helped the MIRFOL team on specific fields: Cristina Mato-Fresán, Lucía
Meijueiro and Rocío Varela-Pousa.

Thanks to Isabel Cobas Fernández for her very useful reviews to a draft of this document.

CHARM

Model for
Project A

Model for
Project B

Model for
Project C

CHARM

Organization-Wide
Model

Model for
Project A

Model for
Project B

Model for
Project C

A B

3
X

3
 X

1
 X

CHARM Extension Guidelines · version 1.1.0 · EN

11

References

[1] Incipit, 2018. ConML Technical Specification. ConML 1.4.
http://www.conml.org/Resources_TechSpec.aspx

[2] Incipit, 2018. ConML Web Site. Accessed on 23/02/2018. http://www.conml.org

[3] Incipit, 2018. CHARM Web Site. Accessed on 23/02/2018. http://www.charminfo.org

[4] Incipit, 2018. CHARM White Paper, version 1.0.7. Incipit, CSIC.
http://www.charminfo.org/Resources/Technical.aspx

http://www.conml.org/Resources_TechSpec.aspx
http://www.conml.org/
http://www.charminfo.org/
http://www.charminfo.org/Resources/Technical.aspx

	Introduction
	Background and Motivation
	Creating a Particular Model
	Picking a Base Model
	Renaming, Modifying and Removing Elements
	Renaming Elements
	Removing Elements
	Enumerated Types
	Enumerated Items
	Classes
	Attributes
	Associations

	Adding Your Own Content
	Enumerated Types and Enumerated Items
	Classes and Features

	A Sample Particular Model
	Extension Process
	Extension Best Practices
	Extension Means Refinement
	Use Model Refinement Hierarchies in Organizations

	Acknowledgements
	References

